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An extension is proposed of the Shannon entropy-based structural complexity

measure introduced by Krivovichev, taking into account the geometric

coordinational degrees of freedom a crystal structure has. This allows a

discrimination to be made between crystal structures which share the same

number of atoms in their reduced cells, yet differ in the number of their free

parameters with respect to their fractional atomic coordinates. The strong

additivity property of the Shannon entropy is used to shed light on the

complexity measure of Krivovichev and how it gains complexity contributions

due to single Wyckoff positions. Using the same property allows for combining

the proposed coordinational complexity measure with Krivovichev’s combina-

torial one to give a unique quantitative descriptor of a crystal structure’s

configurational complexity. An additional contribution of chemical degrees of

freedom is discussed, yielding an even more refined scheme of complexity

measures which can be obtained from a crystal structure’s description: the six

C’s of complexity.

1. Introduction

In a series of recent articles, Krivovichev (2012a,b, 2013a,b,

2014a,b, 2016, 2017; Krivovichev et al., 2017, 2018; Krivovichev

& Krivovichev, 2020) proposed an elegant way of measuring

the structural and topological complexity of crystal structures

in terms of their Shannon information amount, or Shannon

entropy.

1.1. Shannon entropy

Shannon (1948a,b) quantified the information amount H

encoded in a message constituted of P entities falling into N

equivalence classes as (in units of bits)

HNðPÞ ¼ HNðp1; p2; . . . ; pNÞ ¼
XN

i¼1

LðpiÞ; ð1Þ

in which

LðxÞ ¼
0 for x ¼ 0 or x non-definite,

�x log2 x for x>0,

�
ð2Þ

and where

pi ¼ Pi=P ð3Þ

denotes the probability of occurrence of the ith symbol, which

is calculated as the quotient of the number of the ith symbol,

Pi , to the total number of symbols,

P ¼
XN

i¼1

Pi: ð4Þ
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The N individual probabilities pi are the elements of a discrete

finite probability distribution,

P ¼ p1; p2; . . . ; pN

� �
¼ pi

� �N

i¼1
¼ Pi

� �N

i¼1
=P; ð5Þ

where N = jPj. The continuous case is also possible, as well as

various other generalizations (Aczél & Daróczy, 1975),

although these are of no further interest in the context of this

work. Note that the probabilities may form the mathematical

object of a multiset, meaning that, in contrast to a set, multiple

instances of any element are allowed. Permuting their order

leaves the Shannon entropy invariant (symmetry property), as

does including/excluding probabilities pi = 0 (expansibility

property). Note also that the following two conditions hold:

ðiÞ 0 � pi � 1;

ðiiÞ
XN

i¼1

pi ¼ 1:
ð6Þ

The second criterion guarantees the completeness of the

probability distribution (a generalization of the Shannon

entropy due to Rényi allows for incomplete probability

distributions too; see Aczél & Daróczy, 1975, pp. 26–27). For

later use and reasons of clarity we also define a simplified

version of equation (1) using a slightly different notation,

HNðP� PÞ ¼ HðP1;P2; . . . ;PNÞ; ð7Þ

which just lists the integer enumerators Pi, since N and P can

be easily inferred from the number of enumerators and their

sum, respectively. In the case of equidistributed probabilities,

with the number of equivalence classes being a maximum, N =

P, and with all enumerators being unity, P1 = P2 = . . . = PP = 1,

we further condense the entropy symbol to

HPðP� PÞ ¼ HðP1;P2; . . . ;PPÞ ¼ Hð1; 1; . . . ; 1Þ ¼ HP: ð8Þ

An axiomatic treatment of information theory has shown that

the Shannon entropy really is the most natural measure of

information with respect to a number of intuitive, plausible

and desirable mathematical properties expected from such a

measure (Aczél & Daróczy, 1975).

1.2. Krivovichev complexity

Shannon’s (1948a,b) entropy formula was applied to

chemical graphs quite early on by Rashevsky (1955), while

later Bertz (1981, 1983) based a variety of molecular

complexity measures upon it. Its crystallographic application

due to Krivovichev is based on interpreting a crystal structure

as a message consisting of atoms. The subdivision of M atoms

into N equivalence classes is given by the distinct types of

crystallographic orbits occurring in a crystal structure, each

one encompassing a set of symmetrically equivalent atoms.

These crystallographic orbits are represented by the Wyckoff

positions associated with a given space-group type.

Note that in order to maintain a consistent way of assigning

a complexity value to a crystal structure, the number of atoms

refers to the reduced unit cell of the crystal, i.e. the unique

(apart from orientation) primitive unit cell, which fulfils

certain algebraic conditions imposed on the basis vectors of

the lattice. For centred non-primitive unit cells the number of

atoms is larger by a factor of 2, 3 or 4 depending on the

centring type.

Now, in its crystallographic interpretation, the probability

of occurrence is given as the quotient mi = Mi /M of the

multiplicities Mi of occupied Wyckoff positions, with the total

number of atoms M given as their sum [cf. equation (4)] and

the individual probabilities forming the elements of a prob-

ability distributionM [cf. equation (5)].

From this, and following equation (1), the conventional

crystallographic Shannon entropy is defined as

IG ¼ HNðMÞ ¼
XN

i¼1

L Mi=Mð Þ; ð9Þ

measuring a crystal structure’s complexity in bits per atom.

Here, i.e. in Krivovichev’s notation, the index G originates

from ‘graph’, since the same formula can be used to measure

the information content of an abstract mathematical graph.

We will stick to this notation for the moment, in order to

maintain cross-referencing with the existing literature.

However, we will change the notation later according to IG =

IM , in order to maintain a general scheme for all yet-to-be-

introduced univariate Shannon entropies.

A number of derived complexity measures follow. First, the

maximal information content of a crystal structure, also

measured in bits per atom, and given as

IG;max ¼ HM ¼ log2 M: ð10Þ

Assuming fully symmetrically independent atoms, with the

number of equivalence classes matching the number of atoms

(N = M), it represents the case of equidistributed probabilities,

mi = 1/M. In information theory contexts this maximal

Shannon entropy is sometimes also known under the name of

Hartley entropy. Second, the normal information content of a

crystal structure,

IG; norm ¼
IG

IG;max

; ð11Þ

represents a dimensionless quantity ranging between zero (all

atoms are symmetrically equivalent, N = 1, M1 = M) and unity

(no atoms are symmetrically equivalent, N = M, Mi = 1). Third,

the total information content of a crystal structure,

IG; total ¼ M � IG ¼ M � IG;max þ
XN

i¼1

LðMiÞ; ð12Þ

takes into account the size of the system, measured in bits per

unit cell. (For the derivation of the rightmost equation from

the middle one, see Appendix A.)

It is noteworthy that all these measures are independent of

the crystal structure’s metrics, being combinatorial in nature

instead, though it is also possible to define an information

density, �inf = IG, total/Vred , measured in bits per cubic

ångström, taking into account the volume Vred of the reduced

unit cell.

Krivovichev applied these information-theory-based

complexity measures to a wide range of compounds, in
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particular inorganic crystal structures (Krivovichev; 2012a,b,

2014a,b), zeolites and other minerals (Krivovichev, 2013a,b;

Krivovichev, 2017; Krivovichev et al., 2018), combining these

ideas on structural complexity with the notion of algorithmic

complexity proposed by Kolmogorov and the concept of

crystal-structure generation by cellular automata (Krivo-

vichev, 2014a), as well as relating them to the symmetry of

minerals (Krivovichev & Krivovichev, 2020). Furthermore,

relations between the structural complexity of crystals and

their thermodynamic properties were explored, in particular

regarding the configurational entropy of a crystal structure

(Krivovichev, 2016) and the enthalpy-governed crystallization

sequence of polymorphs following the Ostwald step rule

(Krivovichev et al., 2017), making this approach firmly inter-

connected with energy principles.

1.3. Combinatorial foundations

In order to get a feeling for the Krivovichev complexities of

crystal structures in an abstract and most general sense,

namely by generating a spectrum of potential complexity

values in a systematic way, one can study the sequence of

normalized entropies,

HN; normðiÞ ¼
1

log2 N

XjPN ðiÞj

j¼1

L
PNði; jÞ

N

� �
; ð13Þ

in which PNði; jÞ denotes the jth summand (part) of the ith

member PNðiÞ of the set PN of canonically ordered integer

partitions for the number N. Here, jPNðiÞj represents the

length of a single integer partition taken from this set. The

total number of integer partitions for a given non-negative

integer N is determined by the number-theoretical partition

function pðNÞ ¼ jPNj.

Integer partitions arise in this setting because of the

subdivision of all M of a crystal structure’s atoms into N

crystallographic orbits of symmetry-equivalent ones, with the

integer multiplicities of the associated Wyckoff positions

always summing up to the total number of atoms, M = M1 + M2

+ . . . + MN , thereby forming an integer partition

[M1, M2, . . . , MN]. Thus, any crystal structure can always be

associated with a corresponding integer partition. Any integer

partition, by application of equation (5), then yields a prob-

ability distribution from which, by application of equation (1),

its Shannon entropy can be calculated.

Take, for instance, the set of integer partitions for N = 4,

P4 ¼ f½4�; ½3; 1�; ½2; 2�; ½2; 1; 1�; ½1; 1; 1; 1�g; ð14Þ

with pð4Þ ¼ jP4j ¼ 5, which yields

H4; normð1Þ ¼ Lð4=4Þ=2 ¼ 0:000;

H4; normð2Þ ¼ Lð3=4Þ=2þ Lð1=4Þ=2 ¼ 0:406;

H4; normð3Þ ¼ Lð2=4Þ ¼ 0:500;

H4; normð4Þ ¼ Lð2=4Þ=2þ Lð1=4Þ ¼ 0:750;

and H4; normð5Þ ¼ 2Lð1=4Þ ¼ 1:000;

ð15Þ

respectively (all values in bits per freedom). As a general

trend, and in agreement with intuition, it can be noted that the

Shannon entropy values increase with increasing differentia-

tion of a partition (abstract crystal structure) and decrease

with increasing integration (symmetry equivalence) in the

opposite direction. Note, in particular, that the most

condensed partition P4ð1Þ ¼ ½4� represents the case in which

the normalized entropy measure is zero,

HN; normð1Þ ¼ log2 Nð Þ
�1

HðNÞ ¼ 0; ð16Þ

while the most expanded equidistributed partition

P4ð5Þ ¼ ½1; 1; 1; 1� represents the case in which the normalized

entropy measure becomes unity,

HN; normðNÞ ¼ log2 Nð Þ
�1

HN ¼ 1; ð17Þ

thus defining natural complexity limits for any given partition.

An important thing to note in the approach of Shannon is

that the size N of the partition is reflected only in the non-

normalized entropy values HN for the equidistributed case,

since while

0 ¼ H1 < H2 < H3 < H4 < � � � ; ð18Þ

the non-normalized non-equidistributed entropy values H(N)

amount to zero independent of N:

0 ¼ Hð1Þ ¼ Hð2Þ ¼ Hð3Þ ¼ Hð4Þ ¼ � � � : ð19Þ

Thus, in the approach of Shannon, it is not the actual size of a

system that is responsible for the complexity, but how a system

is organized into subsystems, as highlighted by the stars-and-

bars notation

P4ð4Þ ¼ ½2; 1; 1� , ?? j ? j ? ð20Þ

used in combinatorics.

Notably, this differs from an empirical definition of struc-

tural complexity, pragmatically based on the simple number of

atoms in the reduced unit cell, such as used by Dshemuchadse

& Steurer (2015) and Steurer & Dshemuchadse (2016) for the

classification of complex metallic alloys. From among all

compound classes scoring high on average in their structural

complexity, intermetallics are infamous for harbouring some

of the most complex crystal structures known, with IG, total

commonly exceeding values of 103 bits per unit cell. The

record-holding intermetallic compound Al55.4Cu5.4Ta39.1, the

most complex in terms of the simple number of atoms, 23 134,

in its unit cell, exhibits a stunning Krivovichev complexity of

IG, total = 48 538.637 bits per unit cell (Krivovichev, 2014b),

thereby setting an upper limit on the scale of complexity

values one has to expect.

In our attempt to understand the complex crystal structure

of Na11Hg52 (Hornfeck & Hoch, 2015), with an already

remarkable IG, total = 3936.056 bits per unit cell (Tambornino et

al., 2015), we estimated its structural complexity in terms of

counting, albeit in a rather ad hoc fashion, the compound’s

chemical and geometric degrees of freedom. In the remainder

of this article we aim to refine the notions of chemical and

geometric degrees of freedom, trying to make them precise

and quantitative and extending Krivovichev’s idea.

The rationale behind this approach is to continue stepping

along a path trodden by Mackay (2001), after which the
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complexity of a crystal structure can be defined by the number

of parameters necessary to describe it, a notion similar to

Kolmogorov’s concept of algorithmic complexity, asking for

the shortest possible set of rules necessary to describe a

pattern.

At the outset, we motivate this pursuit with some questions:

What about the geometric degrees of freedom? How can they

be represented? Should they not be taken into account too?

And preferentially in the same systematic scheme, for that

matter?

2. Extending Krivovichev complexity: univariate case

Shannon’s approach is very general: since it does not take into

account the semantic content of a message, focusing on the

relational structure existing between entities rather than their

absolute meaning, it is widely applicable.

It is, however, in the specific application, when a meaning is

established by interpreting what the entities under consid-

eration are, and how their relational structure translates into a

complete probability distribution, that the definition of the

calculation of the Shannon entropy is based. It is this estab-

lishment of meaning which makes the application of the

Shannon entropy a subjective choice, opening up the possi-

bility of extending Krivovichev’s complexity measures.

2.1. Univariate Shannon entropies

In order to exploit the advantages of a Shannon-type

complexity measure in a more comprehensive way, Fig. 1

reviews the general framework for univariate entropy

formulas.

The integer parameter Xi counting the size of an individual

subsystem, out of N subsystems in total, together with the size

X of the system defines a probability xi. All probabilities xi

constitute a probability distribution X . From this a Shannon

entropy HNðXÞ = IX can be calculated, as well as its derived

maximal, normal and total complexities after Krivovichev.

While in the following special Shannon entropies will get their

own symbol, in order to reflect their individual contributions,

it seems best to address their units by the common phrase ‘bits

per freedom’ where applicable, highlighting the intention to

treat all degrees of freedom alike.

2.2. Crystal structures and Wyckoff sequences

Now, in order to extend the complexity measures of

Krivovichev one has to identify other quantitative crystal

structure descriptors (QCSDs; Mackay, 1984; Hornfeck, 2012)

which lend themselves to a description using Shannon’s and

Krivovichev’s approaches. In particular, the QCSDs should be

of integer type, forming ratios with their totals in the

denominator, thus facilitating the definition of a probability

distribution and the corresponding entropy measures.

A complete geometric description of a crystal structure

consists of three parts: (i) its symmetry, as given by the space-

group type; (ii) its metrics, as given by the lattice parameters;

and (iii) its atomic coordinates, as determined for an asym-

metric unit, and given by the specification of the occupied

Wyckoff positions.

For a given space-group type and setting, each Wyckoff

position can be specified by a certain Wyckoff letter, where a

to z and � define the possible alphabet (in its entirety only

present for the space-group type Pmmm, No. 47). Thus, the

geometry of a crystal structure can be represented very

concisely by stating this information in a linear encoding, a

crystal structure Wyckoff sequence, composed of the space-

group type number (sometimes its Hermann–Mauguin symbol

is used instead), followed by a list of Wyckoff letters, in reverse

alphabetical order, each letter with its frequency of occurrence

fi assigned as a superscript (usually dropping fi = 1).

When based on standardized crystal structure information,

the Wyckoff sequence is a unique encoding of an abstract

crystal structure. Only if additional crystallochemical classifi-

cation criteria, such as distinguishable unit-cell axial ratios and

atomic coordination environments, are taken into considera-

tion does a finer classification into isopointal/isotypic structure

types result (Parthé & Gelato, 1984; Parthé et al., 1993).

In the following, structure type and Wyckoff sequence

information were taken from Pearson’s Crystal Data Crystal

Structure Database for Inorganic Compounds (PCD; Villars &

Cenzual, 2013) using standardized crystal structure data. Note

that the number of distinct Wyckoff sequences is quite small,

with only 15 503 cases represented in the aforementioned

database.

While most of the parameters used in the description of

crystal structures are numerical from the outset, two notable

exceptions exist for most crystal structure descriptions in that

the space-group-type symmetry and the atomic decoration of

the Wyckoff sites are given by qualitative, not quantitative,

descriptors only, namely by the Hermann–Mauguin symbol

and the ones used for the chemical elements, respectively. This

mixing of qualitative and quantitative statements is a major

nuisance for any theoretical treatment that aims to be fully

quantitative.
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Figure 1
The general framework for univariate entropy formulas. The graph on the
left illustrates the way in which the mathematical entities are derived
from each other, eventually yielding the various discussed information
measures.



An easy workaround for the designation of the atom types

is to use the atomic number Zi of the chemical element

instead, with the index i denoting the associated element of

the probability distribution Z. Note that, in the context of this

work, the atomic number of a chemical element will always be

represented by the indexed symbol Zi , while the non-indexed

symbol Z will be reserved for the sum total of all atomic

numbers in the crystal structure, thus following the notation

for univariate entropy measures as shown in Fig. 1. Note in

particular that Z does not represent the number of formula

units, contrary to the common use of the letter in the context

of crystal structure description.

Table 1 gives a review of the numerical parameters involved

in the description of crystal structures, together with the types

of numbers and definition ranges for each parameter.

Note that we use the term ‘site arity’ as a shorthand for the

degrees of freedoms of a given Wyckoff position with respect

to its general atomic coordinates as tabulated in the Interna-

tional Tables for Crystallography, Vol. A (Aroyo, 2016). This

notion follows the nomenclature in computer science, where

arity is the number of arguments a function takes, e.g. f(x, y)

for a binary function. It is also reflected in the corresponding

descriptors invariant, univariant, bivariant and trivariant,

which describe the crystallographic cases of a fixed Wyckoff

position or one with one, two or three degrees of freedom,

respectively, following the nomenclature used for lattice

complexes (Aroyo, 2016). In mathematical language, these are

also known as constant, univariate, bivariate and trivariate,

respectively. Finally, this also allows us to differentiate the

distinct contributions to a combined Shannon entropy, where

the general idea is to treat all degrees of freedom, say multi-

plicities and arities, on an equal footing.

2.3. Excursion I: an entropy for symmetry?

Still, the towering notion of symmetry appears to be absent

from the listing given in Table 1. However, this is only partly

true, since the symmetry is expressed by the splitting pattern

of the multiplicities of the crystallographic orbits, and thus

does not have to be accounted for separately.

However, since each space-group type is characterized not

only by its group of lattice translations of infinite order, but

also by its finite-order point group (crystal class) of rotation

and reflection operations, and because symmetry elements can

be classified according to their group-theoretical order,

1! 1; 1; 2; 2 ð¼ mÞ ! 2; 3! 3; 4; 4! 4; 3; 6; 6! 6;

ð21Þ

it becomes possible to calculate a Shannon entropy of a point

group, in just the same way as described above, by accounting

for all the orders of the individual symmetry elements present.

This might be useful to establish an ordering of space-group

types according to their entropies in those applications where

a numerical ranking of objects according to their symmetry is

needed. Indeed, in the context of pattern recognition the

Shannon entropy has already been used to define an amount-

of-symmetry detecting measure (Yodogawa, 1982).

2.4. Excursion II: on the choice of chemical degrees of
freedom

In the previous section a choice is made to represent the

chemical degrees of freedom of a crystal structure by the

atomic number of its constituent elements. This choice is

necessary in order to replace the qualitative information on

the atom type with a quantitative parameter, for which the

atomic number seems to be the most natural match. Yet is this

choice meaningful? And if so, is it unique?

Regarding the first question, one might illustrate the idea

with an example: do NaCl, KCl and RbCl, all of Wyckoff

sequence 225, ba, differ in their chemical complexity? In terms

of valence electrons, determining their chemistry, they do not.

In terms of their total electron distributions, however, they do,

with the electron counts for the ion pairs (M+, X�) being

(10, 18) for NaCl, (18, 18) for KCl and (36, 18) for RbCl.

Indeed, both K+ and Cl� in KCl share the same number of

electrons, being isoelectronic to neutral argon, thereby veiling

their difference in X-ray diffraction by their identical scat-

tering contrast. Their corresponding entropies reflect this,

Hð10; 18Þ ¼ 0:940 ðNaClÞ;

Hð18; 18Þ ¼ 1:000 ðKClÞ;

Hð36; 18Þ ¼ 0:918 ðRbClÞ;

ð22Þ

with the entropy being maximized for the equidistributed case.

Thus, regarding the total electron distribution, RbCl is slightly

less chemically complex than NaCl, which is itself slightly less

chemically complex than KCl.

Concerning the second question, the answer is no, the

choice is not unique, but rather a matter of definition. We

mention only two alternatives. First, with respect to the

concept of structure-type maps, another choice for differ-

entiating the atom types could be the use of Mendeleev

numbers (Pettifor, 1984, 1986). While these are integers too,

they place the chemical elements in sequence according to a

different logical order, thereby reflecting some of their prop-

erties in a better way than atomic numbers do. Second, one

might also use the stoichiometric coefficients of the chemical

formula associated with a crystal structure, as has been done

by Siidra et al. (2014) and Krivovichev et al. (2018) for their
chemIG complexity measure.
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Table 1
Numerical parameters used in the description of crystal structures.

The definition ranges of the parameters are given by finite sets of integers,
semi-open continuous intervals of real numbers and the positive real line,
respectively.

Parameter
Number
set Definition range

Lattice parameters R > 0
Atomic numbers Z {1, 2, . . . , 118}
Atomic coordinates R [0, 1)
Atomic displacements R > 0
Site multiplicities Z {1, 2, 3, 4, 6, 8, 12, 16, 24, 48}
Site arities Z {0, 1, 2, 3}
Site occupancies R (0, 1]



2.5. Chemical, combinatorial and coordinational complexity

Thus, to summarize, there are just three integer crystal

structure descriptors, the atomic numbers Zi, the site multi-

plicities Mi and the site arities Ai, which can be used, in full

analogy with Krivovichev’s approach, for defining three

corresponding sets (tetrads),

IX ¼ IX ; IX;max; IX; norm; IX; total

� �
; ð23Þ

of four univariate information measures each, in which the

subscript X denotes the type of attribute X 2 {Z, M, A}. Note

that, in this general scheme, the notation of the Krivovichev

complexity measures [cf. equations (9) to (12)] changes

according to IG ! IM . In addition, we choose to introduce

another unifying notation, highlighting their nature as

Shannon entropies,

Hchem ¼ IZ ¼ HjZjðZÞ;

Hcomb ¼ IM ¼ HjMjðMÞ;

Hcoor ¼ IA ¼ HjAjðAÞ;

ð24Þ

of a chemical, combinatorial and coordinational kind,

respectively. This notation appears to be easier to memorize,

too, and applies in the same way for the maximal, normal and

total measures.

Fig. 2 gives an illustration of the three conceptually distinct

contributions to a crystal structure’s complexity emerging

from the subdivision of a crystal structure composed of atoms,

each having Zi degrees of freedom, into Wyckoff positions,

each contributing the pair (Mi, Ai) of degrees of freedom.

3. Extending Krivovichev complexity: bivariate case

While it is advantageous to have complexity measures

accounting for the chemical, combinatorial and coordinational

degrees of freedom separately, yielding a finer mode of

analysis for conceptually different contributions to the total

structural complexity, one might eventually prefer a single

combined complexity measure, concise yet comprehensive, in

one’s toolbox.

In the following we will focus on the pairwise combination

of complexity measures, since it will be shown that the

combination of any number of complexity measures into a

single one follows the same rules.

3.1. Fundamental properties of a combined Shannon entropy

Reflecting the fact that the entropy is an extensive property

of a system, and with the individual contributions being

treated on an equal footing, their combination should be

additive in nature. Moreover, a combined measure based on

individual Shannon entropies should be a Shannon entropy

again, i.e. fulfilling all of its properties in general. In particular,

the property of completeness [cf. equation (6)] of all the

involved probability distributions, the individual ones as well

as their combination, turns out to be decisive. However, the

simple addition of entropies,

HjXjðXÞ þHjYjðYÞ ¼
XjXj
i¼1

L
Xi

X

� �
þ
XjYj
j¼1

L
Yj

Y

� �
; ð25Þ

fails to fulfil this condition by definition. (Similar issues caused

by failing definitions of Shannon-like entropies arise in their

application to the quantum-chemical analysis of atoms and

molecules; see Flores-Gallegos, 2019.) The only proper way to

combine a pair of individual probability distributions X and Y

into a combined one, symbolized as X ] Y, such that the

combined probabilities add up to unity, is given by

X ] Y ¼
Xi

� �jXj
i¼1
] Yj

� �jYj
j¼1

X þ Y
: ð26Þ

Here, ] denotes a multiset sum in which the multiplicity of an

element in the union multiset, X ] Y, is the sum of its multi-

plicities in the summand multisets, X and Y, respectively. For

instance,

½4; 4; 4; 2; 2�

16
]
½2; 1; 1�

4
¼
½4; 4; 4; 2; 2; 2; 1; 1�

20
: ð27Þ

Thus the resulting Shannon entropy, accounting for every

degree of freedom in a proper manner, is given by
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Figure 2
The Wyckoff positions in plane group p4mm (No. 11), (top left)
designated by their Wyckoff letters, and shown separately for positions
with (top right) zero, (bottom left) one and (bottom right) two degrees of
freedom (arities) Ai , as indicated by the presence of zero, one and two
(orthogonal) pairs of arrows, respectively. Note that sites equivalent by
symmetry can only move in unison. The corresponding multiplicities Mi

are given by the number of visible sites of the same colour, as well as by
the integers inside the circles representing a site. The possibilities of
independent decoration of sites by atoms of atomic number Zi are
highlighted by giving each distinct Wyckoff position its own colour, red,
green, blue, cyan, magenta, yellow and black, respectively. Sites
equivalent by translation symmetry are not shown.



HjXjþjYjðX ] YÞ ¼
XjXj
i¼1

L
Xi

X þ Y

� �
þ
XjYj
j¼1

L
Yj

X þ Y

� �
: ð28Þ

The reader is invited to compare this equation (28) with the

previous equation (25) to spot their difference. In particular,

one should note that, while the summands on the right-hand

side of equation (25) are based on complete probability

distributions/proper Shannon entropies whereas their sum by

simple addition on the left-hand side of equation (25) is not,

the opposite is true for equation (28).

Equation (28) covers a distinct form of additivity, known as

strong additivity, in contrast to the plain additivity expressed

in equation (25). At their core these two notions of additivity

for the Shannon entropy (another one is subadditivity) are

rooted in the question of the independence of the information.

Additivity requires independence, i.e. the information content

of the combination of independent subsystems is just the sum

of their individual entropies. Strong additivity, by comparison,

is conceptually more than that, the subsystems are not inde-

pendent, and the total entropy contains properly weighted

contributions from the conditional entropy of the individual

subsystems in relation to the entropy of the system (see

Appendix B for further formulas).

In a most remarkable way, both notions of additivity can be

reconciled within a single mathematical expression for two

probability distributions (subsystems), X and Y, namely as

HjXjþjYjðX ] YÞ ¼HðX;YÞ þ
X

X þ Y
�HjXjðXÞ

þ
Y

X þ Y
�HjYjðYÞ; ð29Þ

such that now both sides of the equation consist of proper

Shannon entropies only. The individual entropies enter the

equation in a weighted fashion, according to a subsystem’s

ratio within the system, while one additional entropy term,

H(X, Y), accounts for a contribution due to their combination,

in particular depending on the subsystem’s individual degrees

of freedom, X and Y, respectively.

Let XðiÞ denote the ith out of a set of S probability distri-

butions (subsystems), each of order jXðiÞj and with X(i)

contributing total degrees of freedom. Then the generalized

strong additivity formula becomes

HPS

i¼1
jXðiÞj

]S

i¼1

X
ðiÞ

 !
¼ HS X ð1Þ; � � � ;X ðSÞ

	 


þ
XS

i¼1

X ðiÞ �H
jXðiÞj
X
ðiÞ

	 

X ð1Þ þ � � � þ X ðSÞ

: ð30Þ

In an axiomatic treatment of Shannon entropy it turns out

that, together with continuity (small changes in the prob-

abilities yield only small changes in the entropy) and

symmetry (permutations of the probabilities leave the entropy

invariant), strong additivity is, up to a multiplicative constant

(normalization), the defining property of the Shannon entropy,

distinguishing it uniquely from other entropy measures.

3.2. Compositional and configurational complexity

Using the strong additivity property of the Shannon

entropy, we can now construct any combination of univariate

entropy-based complexity measures. In particular, these are

the bivariate compositional complexity,

IZM ¼ HðZ;MÞ þ
Z �HjZjðZÞ

Z þM
þ

M �HjMjðMÞ

Z þM

¼ HðZ;MÞ þ
Hchem; total þHcomb; total

Z þM
; ð31Þ

and the bivariate configurational complexity,

IMA ¼ HðM;AÞ þ
M �HjMjðMÞ

M þ A
þ

A�HjAjðAÞ

M þ A

¼ HðM;AÞ þ
Hcomb; total þHcoor; total

M þ A
: ð32Þ

Here, the more explicit notations HjZjþjMjðZ ]MÞ and

HjMjþjAjðM ] AÞ have been abbreviated to IZM and IMA,

respectively, following the notation of Krivovichev. Apart

from the aforementioned formulas based on the strong addi-

tivity property of the Shannon entropy, highlighting the

univariate contributions, their calculation follows the general

scheme presented in Fig. 1, including their maximal, normal

and total variants.

The adjectives used for the bivariate complexities are

chosen to best represent the combinations of the univariate

complexities involved in their definition. The term ‘composi-

tional’ refers to the fact that, in order to define a composition

of a chemical compound, one has to specify both the atom

types (chemical complexity) and their stoichiometric propor-

tions (combinatorial complexity). In the same way, in order to

specify a crystal structure as a purely geometric point set

(configuration) in three-dimensional space, one has to specify

the site multiplicities (combinatorial complexity) and the site

arities (coordinational complexity) of the Wyckoff positions.

In principle, there would be another combination of attri-

butes possible, namely the one between the atomic numbers Zi

and the arities Ai, but it seems that this specific combination

lacks an interpretation of its physical meaning, so it is left out

of consideration.

3.3. Wyckoff multiplicities and arities

In this and the following section we focus on the config-

urational complexity. Any Wyckoff position is characterized

by two integer quantities: its multiplicity (all distinct values

occurring for reduced cells, coinciding with the possible orders

of the point groups in three dimensions),

Mi 2 f1; 2; 3; 4; 6; 8; 12; 16; 24; 48g; ð33Þ

and its spatial degree of freedom (arity),

Ai 2 f0; 1; 2; 3g: ð34Þ

Now, the total number of spatial degrees of freedom A for a

crystal structure consisting of M atoms is given by the number

of free parameters Ai that one is able to specify for each of its

N individual Wyckoff positions of site multiplicity Mi. In full
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analogy with a mechanical system, any atomic configuration is

properly determined only if all of these independent para-

meters are specified by its structure description. Table 2 gives

an overview of the frequencies of occurrence for each pair

(Mi , Ai) among the total number of 1731 distinct Wyckoff

positions.

The listing shows that the multiplicities and arities are not

independent attributes but exhibit a correlation, such that

smaller multiplicities, say Mi < 6, are more often associated

with fixed positions of arity Ai = 0, while larger multiplicities

Mi � 6 are more often associated with general positions of

arity Ai = 3. In order to quantify this statement, one can resort

to the tool of contingency analysis (see Appendix C). Then

one finds a value of Cnorm = 0.615 for Cramér’s normalized

contingency coefficient (see Blaikie, 2003, p. 100), thus

favouring association/non-independence of the attributes.

This can also be seen as a formal justification for the use of the

strong additivity in the calculation of combined Shannon

entropies, in particular the calculation of the bivariate

configurational complexity from the univariate combinatorial

and coordinational complexities, respectively.

3.4. Non-equivalent crystal structures of identical Krivovi-
chev complexity

The reason for an inclusion of coordinate contributions to

the structural complexity is made most obvious by considering

those crystal structures which share the same Krivovichev

complexities, yet differ in their degrees of freedom.

In order to have two crystal structures, in the following

indexed as i and j, that share the same Krivovichev complexity,

two conditions must be fulfilled: both crystal structures must

share (i) the same number of atoms, Mi = Mj , and (ii) their

multisets of fractional Wyckoff position multiplicities,

Mi =Mj . The first condition is necessary but not sufficient,

while the second condition implies the first, and thus can be

used on its own.

Thus, we are interested in transformations of a crystal

structure’s Wyckoff sequence, such that what we will call its

Wyckoff spectrum, i.e.M, stays invariant. This can happen in

different ways. A single Wyckoff position of given multiplicity

and degree of freedom can be replaced in the Wyckoff

sequence by (i) itself (identical case) or (ii) another Wyckoff

position of the same multiplicity and degree of freedom, yet

with a different Wyckoff letter, then Mi = Mj and Ai = Aj

(isomorphous case), or (iii) another Wyckoff position of the

same multiplicity but with a different degree of freedom

(and Wyckoff letter), then Mi = Mj but Ai 6¼ Aj (non-

isomorphous case).

Focusing on the non-isomorphous case for a single Wyckoff

position replacement, this is possible in about half of all

space-group types, namely in 100 out of 230 cases (43.5%), in

particular in all of the space-group types listed in Table 3,

together with all their possible Wyckoff positions as specified

by their Wyckoff letters and differentiated for each multi-

plicity Mi according to the potential change in the degree of

freedom Ai .

An example is given by the following scheme occurring for

the space group type I4/mmm (No. 139) for crystal structures

of Pearson symbol tI10, i.e. all constituted of five atoms in the

reduced cell, as expressed by the shorthand notation (5, A),

which, by the change in their Wyckoff sequence, gain addi-

tional degrees of freedom from A = 0 through A = 1 to A = 2

(^ = and, 	 = exclusive or):

ð5; 0Þ dca Cs2CuO2

c	 d! e . &

ð5; 1Þ eda BaAl4 139; tI10 eca SnF4 :
c ^ d! e & .

ð5; 2Þ e2a Na2HgO2

ð35Þ

Note that all four structures share the same Wyckoff spectrum

M = [2, 2, 1]/5, thus sharing the same Krivovichev complexity

(in bits per freedom)

Hcomb ¼ IM ¼ 2Lð2=5Þ þ Lð1=5Þ ¼ 1:522; ð36Þ
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Table 2
Frequency distribution of 1731 distinct Wyckoff positions according to their multiplicities Mi (related to the reduced unit cell) and arities Ai.

Each pair (Mi , Ai) is represented by the first instance, starting from the highest space-group type number, of a matching Wyckoff sequence, stated in brackets,
consisting of the space-group type number and the Wyckoff letter (related to the not-necessarily reduced unit cell) as given by Aroyo (2016). Except for one
notable case, a pair is non-uniquely associated with a Wyckoff position, with the exceptional pair (1, 3) uniquely representing the Wyckoff position 1a in space-
group type P1 (No. 1). Note that six potential combinations of values – (16, 0), (24, 0), (48, 0), (48, 1), (16, 2) and (48, 2) – do not have a Wyckoff position
associated with them. The marginal and total sums are also given.

Ai

Mi 0 1 2 3 �

1 167 (229, a) 34 (183, a) 3 (8, a) 1 (1, a) 205
2 255 (227, b) 198 (191, e) 23 (46, b) 8 (9, a) 484
3 39 (229, b) 24 (189, g) 5 (174, k) 4 (146, b) 72
4 106 (229, c) 245 (217, c) 59 (121, i) 45 (82, g) 455
6 34 (229, d) 72 (229, e) 18 (190, h) 22 (174, l) 146
8 11 (230, b) 74 (229, f) 29 (141, h) 68 (122, e) 182
12 5 (230, d) 55 (229, h) 16 (217, g) 27 (199, c) 103
16 0 5 (230, e) 0 20 (142, g) 25
24 0 14 (230, g) 10 (229, k) 25 (220, e) 49
48 0 0 0 10 (230, h) 10
� 617 721 163 230 1731
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Table 3
Space-group types (listed by their numbers, SG No.) in which Wyckoff positions can be substituted keeping their multiplicity Mi fixed, while their arity Ai

changes, thereby defining crystal structures with the same Krivovichev complexity despite their different numbers of geometric degrees of freedom.

SG No. Mi (Mi, 0) (Mi, 1) (Mi, 2) SG No. Mi (Mi, 0) (Mi, 1) (Mi, 2)

10 2 i – l m, n 125 4 e, f g, h
11 2 a – d e 8 i – l m
12 2 e, f g, h i 126 4 c, d e
13 2 a – d e, f 8 f g – j
15 2 a – d e 128 4 c, d e
28 2 a, b c 8 f, g h
35 2 c d, e 129 2 a, b c
38 2 c d, e 4 d, e f
40 2 a b 8 g, h i, j
42 2 b c, d 130 4 a, b c
46 2 a b 8 d e, f
48 4 e, f g – l 131 8 n o – q
49 4 i – p q 132 4 e, f g – j
50 4 e, f g – l 8 k – m n, o
51 2 a – d e, f 133 8 e f – j

4 g, h i – k 134 4 c – f g
52 4 a, b c, d 8 h – l m
53 4 e – g h 135 8 e – g h
54 4 a, b c, d 136 4 c, d e – g
55 4 e, f g, h 8 h i, j
56 4 a, b c, d 137 8 e f g
57 4 a, b c d 138 4 a – d e
58 4 e, f g 139 2 c, d e
59 4 c, d e, f 4 f g – j
60 4 a, b c 8 k l – n
62 4 a, b c 140 4 e f – h
63 2 a, b c 8 i, j k, l

4 d e f, g 141 4 c, d e
64 4 c d, e f 8 f, g h
65 2 e, f g – l 142 8 c d – f

4 m n – q 162 2 c, d e
66 4 g – k l 6 i, j k
67 2 a – f g 163 6 g h

4 h – l m, n 164 6 g, h i
68 4 c, d e – h 165 6 e f
69 2 c – f g – i 166 6 f, g h

4 j – l m – o 167 6 d e
70 4 c, d e – g 175 2 c, d e
71 4 k l – n 6 i j, k
72 4 e f – i j 176 6 g h
73 4 a, b c – e 177 2 c, d e
74 2 a – d e 188 6 j k

4 f, g h, i 189 2 c, d e
83 2 e, f g, h 190 6 g h

4 i j, k 191 2 c, d e
84 4 g – i j 192 4 c, d e
85 2 a, b c 12 i – k l

4 d, e f 193 4 c, d e
86 4 c, d e, f 6 f g
87 2 c, d e 12 i j, k

4 f g h 194 6 g h
88 4 c, d e 12 i j, k
89 2 e, f g, h 202 6 d e
90 2 a, b c 12 g h
97 2 c, d e 209 6 d e
98 4 c d – f 211 6 d e
101 4 c d 215 12 h i
102 4 b c 217 6 d e
111 2 e, f g, h 12 f g

4 i – m n 222 12 d e
113 2 a, b c 223 24 j k

4 d e 224 12 f g
115 4 h, i j, k 24 h – j k
119 4 g, h i 225 6 d e
121 2 c, d e 226 24 h i

4 f – h i 229 6 d e
123 2 e, f g, h 24 i j, k
124 4 e, f g, h

8 i – l m



but differ in their total degree of freedom A by one or two,

thus exhibiting different coordinational complexities (in bits

per freedom):

Hcoor ¼ IAð5; 0Þ ¼ 0;

Hcoor ¼ IAð5; 1Þ ¼ 0;

Hcoor ¼ IAð5; 2Þ ¼ 1:

ð37Þ

With the individual contributions of the combinatorial and

coordinational complexities known, one calculates the

combined configurational complexity according to the afore-

mentioned strong additivity formula of the Shannon entropy

as

Hconf ¼ IMAð5;AÞ ¼ Hð5;AÞ þ
5�Hð2; 2; 1Þ þ A�HA

5þ A
:

ð38Þ

Plugging in the different values for A one obtains

Hconf ¼ IMAð5; 0Þ ¼ 0:000þ 1:522þ 0:000 ¼ 1:522;

Hconf ¼ IMAð5; 1Þ ¼ 0:650þ 1:268þ 0:000 ¼ 1:918;

Hconf ¼ IMAð5; 2Þ ¼ 0:863þ 1:087þ 0:286 ¼ 2:236;

ð39Þ

with some of the intermediate terms, in fact, vanishing, and all

final values given in bits per freedom.

Note how the configurational complexity IMA(5, A) rises,

due to the non-vanishing exchange term (first term), even

while the combinatorial complexity term (second term) drops

and the coordinational complexity term (third term) stays

zero, on changing A from zero to one. Note also how the

configurational complexity rises, while the contribution of the

combinatorial complexity to it gradually diminishes from

100% through 66.1% to 48.6%.

4. Strong additivity in crystallography

As it happens, the strong additivity property of the Shannon

entropy transfers in a very natural way to various crystal-

lographic contexts.

4.1. Strong additivity and structural hierarchies

In order to illustrate the rather abstract mathematical

formulas of the previous paragraphs, we discuss the structure

of a stuffed variant of the �-manganese structure type of

Wyckoff sequence

212; d1
Moc1

Ala
1
C ð40Þ

as it occurs for the compound cP24-Mo3Al2C. Here, the

Wyckoff sequence is stated in an extended form, including the

atom types occupying a given site as a subscript to each

Wyckoff letter.

Now, the probability distributions, which can be inferred

from the extended Wyckoff sequence, and with entries listed

in the order in which they occur within it, are given as

Z ¼ ½42; 13; 6�=61;

M¼½12; 8; 4�=24;

and A ¼ ½1; 1�=2;

ð41Þ

respectively.

Note that, for the probability distribution of the arities A,

the expansibility property of the Shannon entropy has been

used, since the fixed site of Wyckoff letter a does not contri-

bute a degree of freedom. The special cases for crystal struc-

tures containing fixed sites, either with some or all Ai = 0, with

A = 0 in addition for the latter case, have been explicitly

considered by the case distinction stated in equation (2), thus

preventing errors due to the non-definiteness of taking the

logarithm of or performing a division by zero, respectively.

Note that the coordinational complexity is also zero, IA = 0,

in those cases in which a crystal structure consists of a single

site only. Then, Ai = A, and hence the logarithm of unity

becomes zero.

As before, the focus will be on the configurational

complexity, with the corresponding probability distributions

beingM and A, respectively. Let us recall the calculation of

the configurational complexity [cf. equation (32)], now with

the corresponding values of the probability distributions of

our example being plugged in:

Hð12; 8; 4; 1; 1Þ ¼Hð24; 2Þ þ
24

26
Hð12; 8; 4Þ þ

2

26
H2

1:815 ¼ 0:391þ 1:347þ 0:077:
ð42Þ

It can be seen that the structural complexity of the stuffed

variant of the �-manganese structure type is 74.2% contrib-

uted by the combinatorial degrees of freedom of the structure,

only 4.2% contributed by the coordinational degrees of

freedom, and as much as 21.5% contributed by the term

accounting for the combination of both subsystems’ degrees of

freedom into one system.

As was shown in equation (30), the strong additivity

formula can be generalized to any number of subsystems in a

straightforward manner by summing all weighted individual

subsystem entropy terms together with one term for their

combined entropy. Now, it is interesting to note that one can

selectively calculate the combinatorial complexity of the

stuffed �-manganese structure in just the same manner,

namely as

H24 ¼Hð12; 8; 4Þ þ
12

24
H12 þ

8

24
H8 þ

4

24
H4

4:585 ¼ 1:459þ 1:793þ 1:000þ 0:333:
ð43Þ

Note that the quantities H24 and H24(12, 8, 4) are identical to

IM, max and IM in the previous notation, which are thus found to

be interrelated by the strong additivity property of the

Shannon entropy. Here, the system consists of three Wyckoff

position subsystems, of multiplicity twelve, eight and four,

instead of the two subsystems of combinatorial and coordi-

national complexity as in equation (42) above.
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And again, the same equation (30) can be used even down

to the level where the system is a single Wyckoff position of

multiplicity Mi and the subsystems are single atoms:

HMi
¼ HMi

þMi �
1

Mi

H1 ¼ log2 Mi: ð44Þ

The latter case, however degenerate and trivial it appears from

the viewpoint of calculation (ironically, almost like the

construction of the set-theoretical von Neumann ordinals

from the empty set, higher-level structural complexity

seemingly arises out of the zero entropy terms H1 associated

with single-atom subsystems), shows nevertheless the hier-

archical applicability of the Shannon entropy formula, inte-

grating subsystems from several atoms to a single Wyckoff

position, from several Wyckoff positions to a single-crystal

structure, and from several individual contributions to one

combined complexity measure.

The three levels of hierarchy reflected by the three equa-

tions above can be neatly presented within a taxonomic tree

(Fig. 3). Note how, on each level of hierarchy and for each

subdivision, the probabilities each add up to unity, as expected

for a complete probability distribution, from which a Shannon

entropy can be calculated. Note also how the subdivision

process stops whenever a probability distribution with equi-

distributed probability values results.

4.2. Strong additivity and group–subgroup relations

As we have seen, the strong additivity property of the

Shannon entropy can be used in the conceptual process of

constructing a single crystal structure by integrating atoms into

Wyckoff positions and Wyckoff positions into the final crystal

structure. However, a similar scheme can be applied for the

comparison of a pair of crystal structures exhibiting a group–

subgroup relation. For this purpose we make use of another

algebraic property of the Shannon entropy, namely its recur-

sivity, expressed as

HNðp1; p2; p3; . . . ; pNÞ ¼HN�1ðp12; p3; . . . ; pNÞ

þ p12 �HðP1;P2Þ: ð45Þ

Here, p12 = p1 + p2, with recursivity naturally holding for any

choice of pair pij > 0. In fact, recursivity just describes a special

case of strong additivity (Baez et al., 2011).

Now, think of a pair of crystal structures related by a group–

subgroup transformation involving the splitting of a Wyckoff

position, of multiplicity m12 , into a pair of Wyckoff positions,

of multiplicities m1 and m2 . Recalling that pi = Mi /M,

equation (45) acquires a corresponding crystallographic

meaning, as relating the Shannon entropy of the crystal

structure higher in symmetry, HN�1(p12, p3, . . . , pN), to the

one lower in symmetry, HN(p1, p2, p3, . . . , pN). Symmetry

reduction naturally increases structural complexity, and by

applying equation (45) we can quantify the exact amount of

this complexity increase as a result of symmetry reduction,

namely p12 � H(P1, P2), which is, of course, just the entropy

difference between the two crystal structures.

4.3. Strong additivity and crystal structure classification

One advantage inherent in equation (30) is the flexibility of

defining new complexity measures on subsystems (e.g. for

partial structures of crystal structures), as well as the possi-

bility of splitting one complexity value into its individual

contributions, which could be called complexity decomposi-

tion analysis (CDA). This lends itself to a novel method of

crystal structure classification.

For instance, structures in which the combinatorial

complexity turns out to be more important than the coordi-

national complexity, i.e. for which IM > IA holds true (combi-

natorial-complex case), will form their own separate class in

this scheme, as will be the case for those structures for which

the opposite is true, i.e. for which IM < IA, or those where both

chemical and coordinate complexity are balanced, i.e. for

which IM = IA. Since it can happen that the relation between

the number of atoms M and the number of degrees of freedom

A does not follow the same trend as the corresponding
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Table 4
Classifying 15 503 distinct Wyckoff sequences (structure types) according
to their combinatorial (IM) and coordinational (IA) complexities.

Note that M denotes the number of atoms in the reduced cell.

M 
 A IM 
 IA

No. of
cases

% of
cases

M > A IM > IA 9520 61.41
M = A IM > IA 4 0.03
M < A IM > IA 697 4.50
M > A IM = IA 1482 9.56
M = A IM = IA 496 3.20
M < A IM = IA 466 3.01
M > A IM < IA 2701 17.42
M = A IM < IA 0 0.00
M < A IM < IA 137 0.88
� 15 503 100.01

Figure 3
The taxonomic tree of complete probability distributions used in the
calculation of the configurational and combinatorial entropies for the
filled �-manganese crystal structure of Wyckoff sequence 212/213 dca.
Note that while for each splitting of a system into subsystems the
denominator of the ratios changes, their sum always adds to unity.



complexities, one might introduce an even finer classification

scheme according to the relations M > A, M = A and M < A,

respectively. Table 4 contains the statistics of structures

according to this finer classification scheme, again based on

the 15 503 distinct Wyckoff sequences present in the PCD.

Following this classification scheme, there are a total of

10 221 (65.9%) structures for which IM > IA, only 2838 (18.3%)

represent the opposite trend of IM < IA and about the same

number, 2444 (15.8%), are balanced (IM = IA).

In general, structures for which IM < IA (coordinational-

complex case) can occur mostly in those space-group types in

which the multiplicity of the Wyckoff positions in the reduced

cell is smaller than its number of degrees of freedom, Mi < Ai .

Of 1731 Wyckoff positions in total, the overwhelming

majority, namely 1658 (95.8%), are characterized by Mi > Ai ,

while for 61 (3.5%) positions Mi = Ai and for only 12 (0.7%)

positions Mi < Ai . These 12 positions occur as the general

positions of the triclinic space-group types, as well as the

general and some special positions of a few monoclinic space-

group types, listed in the following by their space-group

number/Wyckoff letter/Mi /Ai : 1/a/1/3, 2/i/2/3, 3/e/2/3, 4/a/2/3,

5/c/2/3, 6/a/1/2, 6/b/1/2, 6/c/2/3, 7/a/2/3, 8/a/1/2, 8/b/2/3 and

9/a/2/3. In four of these space-group types the only existing

position is the general position. Thus, it happens that many

coordinational-complex structures are solely composed of

multiple occurrences of the general position. For instance, the

structure type of the complex phosphate mP882-Mo2P4O15,

with M = 882, A = 1323 and Wyckoff sequence 7, a441, belongs

to this kind of structure, since the general Wyckoff position,

and the only one existing in space-group type Pc, is the one

with the symbol 2a (Mi < Ai) (441 being almost the highest

power occurring in any Wyckoff sequence, with the record

of 461 associated with the Wyckoff sequence 11, f461e26

which occurs for the structure type mP1896-Na15Fe3Co16-

[Mo176O528H3(H2O)80]Cl27�450H2O with IM > IA, since the

general position has symbol 4f).

Another reason for the observed frequency of occurrence

of combinatorial-complex and coordinational-complex struc-

tures is given by the composition observed for the sets of

multiplicities and arities. With

hMii ¼
1þ 2þ 3þ 4þ 6þ 8þ 12þ 16þ 24þ 48

10
¼ 12:4;

ð46Þ

the average multiplicity, with respect to all possible values, is

much greater than the average degree of freedom,

hAii ¼
0þ 1þ 2þ 3

4
¼ 1:5: ð47Þ

Taking the average with respect to the Wyckoff positions

occurring in the individual space-group types (subscript SGT),

the variation is greater

1:0 ðNo: 1Þ < hMiiSGT < 19:0 ðNo: 230Þ; ð48Þ

0:3 ðNo: 2Þ < hAiiSGT < 3:0; ð49Þ

with hAiimax = 3.0 achieved for space-group types of number 1,

4, 7, 9, 19, 29, 33, 76, 78, 144, 145, 169 and 170. The averaged

averages, however, still show the same trend, albeit more

diminished,

hhMiiSGTi ¼ 4:8; ð50Þ

hhAiiSGTi ¼ 1:3; ð51Þ

of hhMiiSGTi > hhAiiSGTi. Thus, assuming everything else to be

equal, combinatorial-complex structures should occur roughly

four times more frequently than coordinational-complex

structures.

A more detailed picture can be obtained by looking at the

distribution of crystal structures according to their combina-

torial and coordinate complexity values. Table 5 contains the

absolute frequencies of occurrence for 15 503 distinct Wyckoff

sequences distributed according to their IM, total and IA, total

values into 36 bins, with equidistributed interval limits chosen

with respect to powers of ten, and according to a logarithmic

subdivision of values ranging over six orders of magnitude.

As was done above for the individual Wyckoff positions and

the association of their attributes’ multiplicity and arity, a

contingency analysis reveals a Cramér’s normalized contin-

gency coefficient of Cnorm = 0.799, again favouring association

of the corresponding complexity measures, IM, total and IA, total,

respectively.

5. Extending Krivovichev complexity: trivariate case

At this point in our analysis it makes sense to review the

unifying notation for all the complexity measures we have

presented. For this purpose we collect the aforementioned

measures conceptually into the ‘six C’s of complexity’

(Fig. 4).

The scheme presented in Fig. 4 covers all the information of

an ordered (no mixed-occupancy sites are present and all

occupancy parameters are unity), static (no atomic displace-

ment parameters are considered) and affine (the lattice

metrics is ignored) crystal structure, in which each atomic site

is specified by a triple of integers (Zi , Mi , Ai), given by the
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Table 5
Frequency distribution of 15 503 distinct Wyckoff sequences according to
their combinatorial (IM, total) and coordinational (IA, total) complexities,
binned into intervals of powers of ten.

Here, the notation hi, ji is shorthand for the interval [10i, 10j). The marginal
and total sums are also given.

IA, total

IM, total [0, 1) h0, 1i h1, 2i h2, 3i h3, 4i h4, 5i �

[0, 1) 46 0 0 0 0 0 46
h0, 1i 253 168 8 0 0 0 429
h1, 2i 321 1702 3637 99 0 0 5759
h2, 3i 3 73 3808 4221 107 0 8212
h3, 4i 0 0 31 521 489 3 1044
h4, 5i 0 0 0 0 11 2 13
� 623 1943 7484 4841 607 5 15 503



atomic number of the chemical element occupying the site and

its Wyckoff multiplicity and arity.

The corresponding equations, here just given for the total

entropies (the other entropies being defined according to the

scheme presented in Fig. 1), are:

Hchem; total ¼ Z �HjZjðZÞ; ð52Þ

Hcomb; total ¼ M �HjMjðMÞ; ð53Þ

Hcoor; total ¼ A�HjAjðAÞ; ð54Þ

Hcomp; total ¼ ðZ þMÞ �HðZ;MÞ þHchem; total þHcomb; total;

ð55Þ

Hconf; total ¼ ðM þ AÞ �HðM;AÞ þHcomb; total þHcoor; total;

ð56Þ

Hcrys; total ¼ ðZ þM þ AÞ �HðZ;M;AÞ þHchem; total

þHcomb; total þHcoor; total: ð57Þ

Note that Hcrys, total can be defined alternatively as

Hcrys; total ¼ ðZ þM þ AÞ �HðZ þM;AÞ þHcomp; total

þHcoor; total ð58Þ

¼ ðZ þM þ AÞ �HðZ;M þ AÞ þHchem; total

þHconf; total; ð59Þ

taking into account the compositional and configurational

entropies, as indicated in the splitting shown in Fig. 4,

respectively. Indeed, the transformation between these

formulas is governed by the recursivity of the Shannon

entropy:

HðZ;M;AÞ ¼HðZ þM;AÞ þ
Z þM

Z þM þ A
�HðZ;MÞ ð60Þ

¼HðZ;M þ AÞ þ
M þ A

Z þM þ A
�HðM;AÞ: ð61Þ

As emphasized before, this facilitates a more refined analysis

of complex crystal structures, since it becomes possible to

differentiate between crystal structures in a classification

scheme according to their distinct complexities. For instance,

for the aforementioned example given by the compound cP24-

Mo3Al2C, the calculated complexities using the general

scheme of Fig. 1 and equations (52) to (57) are listed in Table 6

as a reference. Here, the full set of conventional (non-

subscripted), maximal, normal and total Shannon entropies

(Krivovichev complexities) are given according to their

subscripted complexity designator xxxx (= chem, comb, coor,

comp, conf or crys in Shannon entropy notation) or attribute

X (= Z, M, A, ZM, MA or ZMA in Krivovichev complexity

notation). The reason for using two notations here is to invoke

a consistent notation for the novel extended complexity

measures, highlighting their character as Shannon entropies,

while keeping a concordance with the complexity measure of

Krivovichev, IG = IM = Hcomb, upon which the extended

measures are conceptually based.

6. Conclusions

We have developed extensions to the complexity measures of

Krivovichev, fully exploiting the information encoded in the

extended, i.e. atom-type augmented, Wyckoff sequence of a

crystal structure. As such they represent quantitative crystal

structure descriptors (QCSDs; Hornfeck, 2012), such as those

widely used in the chemoinformatics literature for molecules.

These QCSDs can be correlated with other descriptors, such as

selected physical properties of a compound, thereby facil-

itating a finer than existing quantitative classification scheme

for crystal structures.
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Figure 4
The six C’s of structural complexity, with their corresponding complexity
attributes X stated in brackets (cf. Fig. 1). The complexity designators
xxxx [cf. equations (52) to (57)] used as subscripts for the respective
Shannon entropies are given by the first four letters of each adjective.
Since each complexity can be associated with a tetrad of conventional,
maximal, normal and total Shannon entropies, there is ultimately a full set
of 24 distinguishable Shannon entropies (Krivovichev complexities)
characterizing any crystal structure (cf. Table 6).

Table 6
Values of the chemical, combinatorial, coordinational, compositional, configurational and crystallographical complexities for the crystal structure of
cP24-Mo3Al2C.

The units are bits per freedom for the conventional (non-subscripted) and maximal Shannon entropies (Krivovichev complexities), and bits per unit cell for the
total entropy, while the normal one is a dimensionless quantity ranging between zero and unity. The Shannon entropy of complexity designator xxxx (chem, comb,
coor, comp, conf, crys) corresponds to the Krivovichev complexity of complexity attribute X (Z, M, A, ZM, MA, ZMA).

Shannon
entropy

Krivovichev
complexity

chem
Z

comb
M

coor
A

comp
ZM

conf
MA

crys
ZMA

Hxxxx IX 1.175 1.459 1.000 2.114 1.815 2.246
Hxxxx, max IX, max 5.931 4.585 1.000 6.409 4.700 6.443
Hxxxx, norm IX, norm 0.198 0.318 1.000 0.330 0.386 0.349
Hxxxx, total IX, total 71.682 35.020 2.000 179.686 47.192 195.424



APPENDIX A
Algebraic transformations

In the following we derive equation (12) for the complexity

measure IG, total. We start with the definition of IG,

IG ¼ �
XN

i¼1

pi log2 pi ¼
XN

i¼1

pi log2

1

pi

; ð62Þ

which after substituting the probabilities becomes

IG ¼
XN

i¼1

Mi

M
log2

M

Mi

: ð63Þ

With IG, total = M � IG we have

IG; total ¼
XN

i¼1

Mi log2

M

Mi

ð64Þ

¼
XN

i¼1

Mi log2 M �Mi log2 Mið Þ ð65Þ

¼
XN

i¼1

Mi log2 M �
XN

i¼1

Mi log2 Mi ð66Þ

¼ log2 M
XN

i¼1

Mi þ
XN

i¼1

LðMiÞ ð67Þ

¼M log2 M þ
XN

i¼1

LðMiÞ: ð68Þ

This last formula can be used to relate IG and IG, max :

IG ¼ IG;max þ
1

M

XN

i¼1

LðMiÞ; ð69Þ

IG;max � IG ¼ �
1

M

XN

i¼1

LðMiÞ: ð70Þ

Since all Mi� 1 and thus all L(Mi)� 0 the final result is always

non-negative. Alternatively, one can also write

IG;max ¼
XN

i¼1

LðMi=MÞ �
XN

i¼1

LðMiÞ=M: ð71Þ

APPENDIX B
Notions of additivity

In accounting for the summation of Shannon entropies, one

has to consider more than one notion of additivity. Indeed, the

many characteristic algebraic properties of the Shannon

entropy can be understood axiomatically (Aczél & Daróczy,

1975; Taneja, 2001; Csiszár, 2008) by asking, what kinds of

properties should be natural for a proper measure of infor-

mation content (Aczél et al., 1974). It turns out that three

properties concern additivity. For the first and second of

these, let

P ¼ ½p1; p2; . . . ; pU � ð72Þ

and

Q ¼ ½q1; q2; . . . ; qV � ð73Þ

and

R ¼ ½p1q1; p1q2; . . . ; p1qV; . . . ;

p2q1; p2q2; . . . ; p2qV; . . . ;

pUq1; pUq2; . . . ; pUqV �: ð74Þ

The subadditivity is then expressed as (Aczél & Daróczy, 1975,

ch. 1, p. 30, equation 1.2.7)

HU�VðRÞ � HUðPÞ þHVðQÞ; ð75Þ

with additivity being the special case for equality. As before, U

= jPj and V = jQj. For the third one, let

P ¼ ½p1; p2; . . . ; pU � ð76Þ

and

Qi ¼ ½qi1; qi2; . . . ; qiVðiÞ� ð77Þ

and

R ¼ ½p1q11; p1q12; . . . ; p1q1VðiÞ; . . . ;

p2q21; p2q22; . . . ; p2q2VðiÞ; . . . ;

pUqU1; pUqU2; . . . ; pUqUVðiÞ�; ð78Þ

and strong additivity is then expressed as (Aczél & Daróczy,

1975, ch. 1, p. 30, equation 1.2.6)

HVð1ÞþVð2Þþ...þVðUÞðRÞ ¼ HUðPÞ þ
XU

i¼1

piHVðiÞðQiÞ: ð79Þ

Note that U = jPj, and the V(i) = jQij are usually distinct from

each other.

Thus, in a general axiomatic context this can be summarized

as (Csiszár, 2008)

HðX;YÞ � HðXÞ þHðYÞ; ðsubadditivityÞ ð80Þ

HðP � QÞ ¼ HðPÞ þHðQÞ; ðadditivityÞ ð81Þ

HðX;YÞ ¼ HðXÞ þHðYjXÞ; ðstrong additivityÞ ð82Þ

in which P and Q represent discrete probability distributions,

X and Y represent distributions of random variables, H(X, Y)

denotes a joint entropy and H(Y|X) denotes a conditional

entropy.

APPENDIX C
Contingency analysis

Given two categorial variables X and Y, each with a certain

number I and J of associated attributes x1, . . . , xI and

y1, . . . , yJ, respectively, one can construct a contingency

matrix (also known as contingency table)

h11 h12 � � � h1J

h21 h22 � � � h2J

..

. ..
.

hij
..
.

hI1 hI2 � � � hIJ

0
BBB@

1
CCCA ð83Þ

research papers

Acta Cryst. (2020). A76, 534–548 Wolfgang Hornfeck � An extension of Krivovichev’s complexity measures 547



whose entries hij represent the observed frequencies of

occurrence for any given pairwise combination (xi , yj) of the

attributes. Let

h� j ¼
XI

i¼1

hij and hi � ¼
XJ

j¼1

hij ð84Þ

be the row and column marginal totals, respectively, and

h� � ¼
XI

i¼1

XJ

j¼1

hij ð85Þ

be their grand total. Then Pearson’s quadratic contingency (�
squared coefficient) is given as

�2
¼
XI

i¼1

XJ

j¼1

hij � h
	 
2

h
; ð86Þ

in which

h ¼
h� jhi �

h� �
: ð87Þ

For a 2�2 contingency matrix, �2 varies from the value 1

(complete association) through 0 (no association) to �1

(complete inverse association), yet for the general case the

range of values is different. In order to make the contingency

measure comparable between contingency matrices of

different general dimensions, one can use Cramér’s contin-

gency coefficient

C ¼
�2

�2 þ h� �

� �1=2

ð88Þ

in its normalized variant Cnorm = C/K with the normalization

constant

K ¼
I � 1

I
�

J � 1

J

� �1=4

; ð89Þ

depending on the dimensions of the contingency matrix. The

obtained measure Cnorm then takes values from zero to unity.

A zero value is associated with full independence, as obtained

by a contingency table with equidistributed frequency values,

while a value of unity represents full association, as obtained

for any permutation matrix including the identity matrix.

Thus, by aggregating and interpreting the observed

frequencies of occurrence in this way, it is possible to assess

the degree of statistical association/independence between the

attributes.
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Funding information

This work was supported by the Czech Science Foundation

through research grant No. 18-10438S, and by Project

No. LO1603 under the Ministry of Education, Youth and

Sports National Sustainability Programme I of the Czech

Republic.

References
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